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Multicopper oxidases linked to multiwall carbon nanotubes via

the molecular tethering reagent, 1-pyrenebutanoic acid, succinimidyl

ester, displayed high bioelectrocatalytic activity for oxygen

reduction.

The multicopper oxidase (MCO) enzymes catalyze oxygen

reduction at high electrochemical potentials, making them

attractive catalysts for biological fuel cell cathodes.1 The redox

active center of an MCO comprises four coordinated copper

atoms: type 1 (T1), type 2 (T2) and type 3 (T3) copper sites.2

The T1 site lies close to the substrate-binding pocket of the

enzyme. In a catalytically active system, the T1 site is the initial

electron acceptor, which then subsequently passes electrons to

the tri-nuclear copper center (T2 and two T3) where oxygen is

ultimately reduced to water. Various experimental strategies

have been proposed for establishing direct electron transfer

(DET) with enzymatic electrodes in which the electrons may

‘hop’ between the enzyme redox center and the electrode. The

DET mode eliminates the inherent limitations of redox

mediators in biological fuel cell and biosensor applications.3

The strategies to electronically connect the electrode and

biocatalysts include: simple physisorption or covalent linkage,

entrapment in conductive polymeric films, association with

metal colloids, and encapsulation within porous matrices that

incorporate a conductive nanomaterial.4 Immobilization

methods using carbon nanotubes (CNT) are an attractive

means to create a three-dimensional, porous, conductive

catalytic matrix on an electrode surface.5 Establishing a

methodology that will reliably link the redox enzymes to well

dispersed, conductive CNT may advance bioelectrocatalysis

and materials applications.

Chen et al. reported that CNT can be modified using

1-pyrenebutanoic acid, succinimidyl ester (PBSE). The aromatic

pyrenyl moiety interacts with the aromatic-like structure of the

CNT walls through irreversible p–p stacking at the CNT and

PBSE interface.6 Subsequent incubation of the PBSE-modified

CNT with protein allows the amines on the protein surface to

form covalent amide bonds that link the proteins to PBSE and

therefore to CNT. The PBSE-based method for sidewall

functionalization and protein immobilization on CNT has

been studied with various model enzymes, but little work has

been related to bioelectrocatalysis and in particular, DET of

redox enzymes.7

For an initial proof of concept, two MCO were selected as

model redox enzymes, laccase from Trametes versicolor and

bilirubin oxidase (BOx) from Myrothecium verrucaria. The

enzymes were immobilized on multi-walled CNT (MWCNT)

by PBSE-modification of MWCNT directly on Torays

carbon paper (TP) electrodes (Scheme 1).w The enzyme

immobilization efficiency was examined first using standard

biochemical assays.w The assay showed that B20 U of

laccase was associated with the electrode, corresponding to

B0.03 mg protein mm�2 electrode. BOx activity proved to be

too low to measure spectrophotometrically for the corres-

ponding BOx-modified PBSE/MWCNT electrode. Since the

activity measured in the standard assay does not represent

electrochemical activity or oxygen reduction, further electro-

chemical characterization of the materials was done to determine

whether an electronic connection was established for the

protein, MWCNT, and TP composite material.w

Scheme 1 Illustration of MCO immobilization onto PBSE-modified

carbon nanotubes.
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Cyclic voltammetry (CV) was used to evaluate the effectiveness

of the PBSE-tether for functionalizing the TP/MWCNT-

electrodes with enzyme. For control experiments, enzymes

were associated directly to (i) TP or (ii) TP/MWCNT through

noncovalent physisorption. Laccase adsorbed directly on TP

showed no evidence of electrocatalytic activity for oxygen

reduction (Fig. 1a). Despite a theoretically short electron

tunneling distance between the enzyme redox center and the

electrode, the open circuit potential (OCP) for the oxygen

reduction reaction was 0.44 � 0.03 V; n = 4, significantly

lower than the thermodynamic maximum (0.688 V vs.

Ag/AgCl) at pH 5.8. TP modified with MWCNT had higher

capacitance (increased electrochemical surface area) but

marginally increased OCP (0.49 � 0.02 V; n = 3). Although

the nanomaterial dimensions may bring about close physical

binding between laccase and MWCNT that could facilitate

electron tunnelling, there was no evidence for interfacial DET

or electrocatalytic activity.

When laccase was tethered to MWCNT via PBSE, the CV

results depicted obvious electrocatalytic activity for oxygen

reduction. The cathodic sweep showed a dramatic deflection

from the control electrode processes below 0.6 V. The OCP,

onset and half-peak potentials were 0.60� 0.01 V, 0.60� 0.01 V,

and 0.47 � 0.02 V; n= 3, respectively, and diffusion limitation

conditions were reached at B0.4 V during the cathodic sweep.

The voltammetric response of the PBSE-tethered laccase

provided a Tafel slope of 18 mV per decade in the kinetic

region above 0.57 V and a slope of 24 mV per decade from

0.5 to 0.55 V. The Tafel slopes approach the theoretical limit

(15 mV) for a four-electron-transfer reaction, and compare

favorably with slopes for conventional oxygen reduction

catalysts.8 The CV trace for nitrogen-sparged electrolyte shows

no catalytic current with the tethered laccase, confirming that the

deflection seen in the cathodic sweep corresponds to oxygen

reduction (Fig. 1).

The methodology was examined further using BOx as an

oxygen reduction catalyst. The PBSE-tethered BOx electrode

(Fig. 1b) also showed high electrocatalytic activity (OCP:

0.62 � 0.005 V; n = 3), the onset and half-peak potentials

for the electrodes were 0.61 � 0.02 V and 0.45 � 0.03 V,

respectively. The OCP at neutral pH was B0.56 V, about

75 mV higher than that reported in the literature for a

covalently linked BOx on MWCNT.9 The CV traces of

oxygen- and nitrogen-sparged electrolyte show a clear distinction

between catalytic and capacitive processes, indicating a high

electrocatalytic activity of BOx. Unlike laccase, BOx exhibited

apparent electrocatalytic activity after simple physisorption

onto the TP or TP/MWCNT electrodes without the PBSE

tether. The response may result from undefined surface

characteristics of BOx that bring about preferential orientation

of the enzyme T1 copper site compared to laccase, or simply a

higher specific catalytic activity for the commercial BOx

preparation.

Galvanostatic measurements at steady state revealed that

the tethered MCO exhibit exceptionally stable performance

with potential losses of less than 100 mV at 50 mA cm�2,

relative to the OCP. By comparison, laccase physisorbed onto

TP or TP/MWCNT-modified could not sustain high

faradic currents (Fig. 2). The BOx on TP and TP/MWCNT

Fig. 1 Cyclic voltammograms (CV) of model MCO bioelectrodes

(laccase (a), BOx (b)). Key: (1) MCO physisorbed on bare TP,

(2) MCO physisorbed on TP/MWCNT electrode; (3) MCO immobilized

on PBSE-modified TP/MWCNT electrode; (4) electrode 3 in nitrogen-

flushed electrolyte. CV scans in phosphate buffer electrolyte (pH 5.8),

scan rate 10 mV s�1, oxygen saturated electrolyte except as noted.

Fig. 2 Galvanostatic polarization curves for laccase (solid lines,

closed symbols) and BOx (dotted lines, open symbols) electrodes.

Key: (triangles) MCO physisorbed on bare TP; (circles) MCO

physisorbed on TP/MWCNT electrode; (squares) MCO immobilized

on PBSE-modified TP/MWCNT electrode. Note: potentials o0 are

not shown; the plotted curves extrapolate beyond the x-axis and are

based on all measured data.
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electrodes, however, showed comparably better performance

than laccase controls, in agreement with the CV results.

The PBSE-modified TP/MWCNT electrodes supported

faster and more complete bioelectrochemical oxygen reduction

than the physisorbed control materials and facilitated DET for

immobilized MCO at current densities much greater than

previous reports.9 The galvanostatic measurements for the

MCO confirm the fabrication of a stable, conductive, bio-

electrocatalytic interface between the enzyme and electrode

that may be attributed to a variety of factors. The PBSE-

modification of MWCNT via p–p stacking preserves the

electronic properties of the MWCNT to allow efficient electron

transport through the matrix. The covalent link between a

MCO and the PBSE-tether will position the enzyme close to

the MWCNT and reduce the electron tunneling distance

between the enzyme and the electrode. In addition, the

distribution of amines on the protein surface will guide

orientation with the MWCNT. The limited electrochemical

activity measured for control electrodes (no PBSE) is attributed

to a small fraction of MCO molecules that align favorably

during physisorption on TP or MWCNT. The response is

evident from the higher OCP measured with MWCNT on TP

(0.49 V) when compared to that of protein-free MWCNT

(0.09 V). The high OCP, however, did not translate to

electrocatalytic activity, possibly due to unfavorable orientation

of the majority of catalyst molecules on the MWCNT surface

or poor catalyst loading. A detailed understanding of the

biophysical interactions at the interface that lead to efficient

bioelectrocatalysis will require additional characterization and

modeling.

The bio-conjugates formed using PBSE effectively link

MCO with MWCNT to facilitate DET and bioelectrocatalytic

oxygen reduction. The catalytic efficiency was significantly

greater than previous reports for MCO electrodes. The process

provides a porous, potentially scalable, architecture that can

advance bioelectrocatalytic applications. Future research will

provide a deeper understanding of the attachment mechanism

that directs enzyme orientation and provides guidance to

optimize the interaction further. The applicability to alternative

catalysts was demonstrated with two MCOs but could be

extended to a wider range of biomolecules and applications.

AFRL work was supported by the AFOSR and

AFRL-Materials and Manufacturing Directorate. The UNM

research was supported by DOD/AFOSR MURI (code

FA9550-06-1-0264).

Notes and references

w Preparation of tethered MCO–MWCNT conjugates: 10 mm2 discs
of Torays carbon paper (TGP 090; Toray Industries, Tokyo, Japan)
used as electrode base. For CNT modification of TP, 30 mL of
MWCNT (1 mg mL�1 in N,N-dimethyl formamide) (Sigma, St. Louis,
MO) was drop-cast onto TP and dried (50 1C, 30 min). For sidewall
functionalization of CNT with PBSE, the TP/MWCNT electrodes
were soaked in a PBSE solution [1-pyrenebutanoic acid succinimidyl

ester; Anaspec Inc, Fremont, CA; (10 mM in N,N-DMF)] for 1 h at
room temperature, washed thoroughly with N,N-DMF to remove
excess PBSE and then with phosphate buffer (10 mM, pH 7). Laccase
(Sigma) was dialyzed against CuSO4 (10 mM) in phosphate buffer
(20 mM, pH 5.8) and then stored at �20 1C until use. Protein
concentrations were determined using BCA assay (BCA Protein Assay
Kit, Thermo Scientific Inc. Rockford, IL). BOx (Sigma) was used as
received. For protein immobilization, PBSE-modified MWCNT/TP
electrodes were incubated with 0.2 mL of laccase (0.5 mg mL�1) or
BOx (0.2 mg mL�1) for 1 h in phosphate buffer (10 mM, pH 7.0).
Excess protein was removed by washing with phosphate buffer and the
electrode tested immediately in an electrochemical cell. Enzyme assays:
the oxidase activity of laccase was determined in phosphate buffer
(100 mM, pH 6.5) using syringaldazine (21.6 mM in methanol) (Sigma)
by measuring the change in absorbance at 530 nm over time. One unit
of activity was defined as 1 mmol of syringaldazine oxidized by laccase
in 1 minute at 37 1C. The catalytic activity of BOx was evaluated using
bilirubin as substrate (0.002% in 0.2 M Tris HCl buffer, pH 8.4) by
measuring the change in absorbance at 440 nm. One unit of activity
was defined as 1 mmol of bilirubin oxidized by BOx in 1 minute at
37 1C. Electrochemical testing: the electrodes were held on a capped
glassy carbon shaft electrode and tested in a 50 mL voltammetric cell
(CH Instruments Inc, Austin, TX) with a glassy carbon counter
electrode and a Ag/AgCl reference electrode (CH Instruments Inc.).
Phosphate buffer (100 mM, pH 5.8, or pH 7.0 when noted) was used as
the electrolyte throughout. CV scans were obtained by scanning from
�0.2 V to 0.8 V at a sweep rate of 10 mV s�1. Galvanostatic
polarization measurements were obtained from 0 to 50 mA cm�2 at
10 mA cm�2 intervals and the voltage data points were recorded after
15 min at each step. Tafel slopes were obtained from the plots of
working electrode potential versus kinetic current in the absence of
convective transport.
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